Danilo Pérez Pantoja

Profesor 
Doctor en Ciencias Biológicas, Mención Genética Molecular y Microbiología, Universidad Católica de Chile

Edificio Biología Molecular 2° Piso. Departamento de Bioquímica y Biología Molecular
(+56-41) 220-3784
(+56-2) 

Laboratorio 

Pregrado

  • BIOINFORMÁTICA – Carrera de Bioingeniería
  • BIOQUÍMICA – Carrera de Lic. Química-Químico
  • GENETICA MOLECULAR E INGENIERÍA GENÉTICA – Carrera de Bioingeniería

Postgrado

  • BIOLOGÍA MOLECULAR DE PROCARIONTES Y EUCARIONTES – Doctorado en Microbiología
  • BIOLOGÍA CELULAR Y MOLECULAR – Doctorado en Ciencias Biológicas
  • BIOINFORMÁTICA Y GENÓMICA AVANZADA – Magíster en Bioquímica y Bioinformática

Líneas de Investigación

Sin información disponible

Proyectos

  • FONDECYT Regular Nº 1161750 – Metagenomic exploration of harsh environments for increasing tolerance to lignocellulose-derived inhibitors in Escherichia coli.

Publicaciones

Artículos incluidos en ISI Web of Sciences:

-Kim J, Pérez-Pantoja D, Silva-Rocha R, Oliveros JC, de Lorenzo V. High-resolution analysis of the m-xylene/toluene biodegradation subtranscriptome of Pseudomonas putida mt-2. Environmental Microbiology. 2015. doi: 10.1111/1462-2920.13054

Pérez-Pantoja D, Leiva-Novoa P, Donoso RA, Little C, Godoy M, Pieper DH, González B.. Hierarchy of Carbon Source Utilization in Soil Bacteria: Hegemonic Preference for Benzoate in Complex Aromatic Compound Mixtures Degraded by Cupriavidus pinatubonensis Strain JMP134. Applied and Environmental Microbiology. 2015. 81(12):3914-2394. doi: 10.1128/AEM.04207-14.

-Svenningsen NB, Pérez-Pantoja D, Nikel PI, Nicolaisen MH, de Lorenzo V, Nybroe O. Pseudomonas putida mt-2 tolerates reactive oxygen species generated during matric stress by inducing a major oxidative defense response. BMC Microbiology. 2015. 15(1):202. doi: 10.1186/s12866-015-0542-1.

Pérez-Pantoja D, Kim J, Silva-Rocha R, de Lorenzo V. The differential response of the Pben promoter of Pseudomonas putida mt-2 to BenR and XylS prevents metabolic conflicts in m-xylene biodegradation. Environmental Microbiology. 2014. 17(1):64-75. doi: 10.1111/1462-2920.12443.

-Jiménez JI, Pérez-Pantoja D, Chavarría M, Díaz E, de Lorenzo V. A second chromosomal copy of the catA gene endows Pseudomonas putida mt-2 with an enzymatic safety valve for excess of catechol. Environmental Microbiology. 2014. 16(6):1767-1678. doi: 10.1111/1462-2920.12361.

Pérez-Pantoja D, Nikel P, Chavarría M, de Lorenzo V. Endogenous stress caused by faulty oxidation reactions fosters evolution of 2,4-dinitrotoluene−degrading bacteria. PLOS Genetics. 2013. 9(8):e1003764. doi: 10.1371/journal.pgen.1003764.

-Nikel P, Pérez-Pantoja D, de Lorenzo V. Why are chlorinated pollutants so difficult to degrade aerobically? Redox stress limits 1,3-dichloroprop-1-ene metabolism by Pseudomonas pavonaceae. Philosophical Transactions of The Royal Society – Biological Sciences. 2013. 368:20120377. doi: 10.1098/rstb.2012.0377.

-Chavarría M, Nikel P, Pérez-Pantoja D, de Lorenzo V. The Entner-Doudoroff pathway empowers Pseudomonas putida KT2440 with a high tolerance to oxidative stress. Environmental Microbiology. 2013. 15:1772-1785. doi: 10.1111/1462-2920.12069.

-Silva-Rocha R, Pérez-Pantoja D, de Lorenzo V. Decoding the genetic networks of environmental bacteria: regulatory moonlighting of the TOL system of Pseudomonas putida mt-2. ISME Journal. 2012. 7:229-232. doi: 10.1038/ismej.2012.98.

Pérez-Pantoja D, Donoso R, Agulló L, Córdova M, Seeger M, Pieper DH, González B. Genomic analysis of the potential for aromatic compounds biodegradation in Burkholderiales. Environmental Microbiology. 2012. 14:1091-1117. doi: 10.1111/j.1462-2920.2011.02613.x.

-Ledger T, Zúñiga A, Kraiser T, Dasencich P, Donoso R, Pérez-Pantoja D, González B. Aromatic compounds degradation plays a role in colonization of Arabidopsis thaliana and Acacia caven by Cupriavidus pinatubonensis JMP134. Antonie Van Leeuwenhoek. 2012. 101:713-723. doi: 10.1007/s10482-011-9685-8.

-Donoso RA, Pérez-Pantoja D, González B. Strict and direct transcriptional repression of the pobA gene by benzoate avoids 4-hydroxybenzoate degradation in the pollutant degrader bacterium Cupriavidus necator JMP134. Environmental Microbiology. 2011. 13:1590-1600. doi: 10.1111/j.1462-2920.2011.02470.x.

-Lykidis A, Pérez-Pantoja D, Ledger T, Mavromatis K, Anderson IJ, Ivanova NN, Hooper SD, Lapidus A, Lucas S, González B, Kyrpides NC. The complete multipartite genome sequence of Cupriavidus necator JMP134, a versatile pollutant degrader. PLoS One. 2010. 5:e9729. doi: 10.1371/journal.pone.0009729.

-Marín M, Pérez-Pantoja D, Donoso R, Wray V, González B, Pieper DH. Modified 3-oxoadipate pathway for the biodegradation of methylaromatics in Pseudomonas reinekei MT1. Journal of Bacteriology. 2010. 192:1543-1552. doi: 10.1128/JB.01208-09.

Pérez-Pantoja D, Donoso R, Sánchez MA, González B. Genuine genetic redundancy in maleylacetate reductase encoding genes involved in degradation of haloaromatic compounds by Cupriavidus necator JMP134. Microbiology. 2009. 155:3641-3651. doi: 10.1099/mic.0.032086-0.

Pérez-Pantoja D, de la Iglesia R, Pieper DH, González B. Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacterium Cupriavidus necator JMP134. FEMS Microbiology Reviews. 2008. 32:736-794. doi: 10.1111/j.1574-6976.2008.00122.x.

-Trefault N, De La Iglesia R, Molina AM, Manzano M, Ledger T, Pérez-Pantoja D, Sanchez MA, Stuardo M, González, B. Genetic organization of the catabolic plasmid pJP4 from Ralstonia eutropha JMP134 (pJP4) reveals mechanisms of adaptation to chloroaromatic pollutants and evolution of specialized chloroaromatic degradation pathways. Environmental Microbiology. 2004. 6:655-668.

Pérez-Pantoja D, Ledger T, Pieper DH, González B. Efficient turnover of chlorocatechols is essential for growth of Ralstonia eutropha JMP134 (pJP4) in 3-chlorobenzoic acid. Journal of Bacteriology. 2003. 185:1534-1542.

-Plumeier I, Pérez-Pantoja D, Heim S, González B, Pieper DH. The importance of different tfd genes during the degradation of chloroaromatics by Ralstonia eutropha JMP134. Journal of Bacteriology. 2002. 184:4054-4064.

-Ledger T, Pieper DH, Pérez-Pantoja D, González B. Novel insights into the interplay between peripheral reactions encoded by xyl genes and the chlorocatechol pathway encoded by tfd genes for the degradation of chlorobenzoates by Ralstonia eutropha JMP134. Microbiology. 2002. 148:3431-3440.

Pérez-Pantoja D, Guzmán L, Manzano M, Pieper DH, González B. Role of tfdCIDIEIFI and tfdDIICIIEIIFII gene modules in catabolism of 3-chlorobenzoate by Ralstonia eutropha JMP134 (pJP4). Applied and Environmental Microbiology. 2000. 66:1602-1608.

Capítulos de Libro:

-Pérez-Pantoja D, Tamames J. (2015) Prokaryotic Metatranscriptomics. In: Hydrocarbon and Lipid Microbiology Protocols, Springer Protocols Handbooks. In press. Edited by T.J. McGenity. Springer-Verlag Berlin, Germany.

-Pérez-Pantoja D, Donoso R, Junca H, González B, Pieper DH (2010) Phylogenomics of aerobic bacterial degradation of aromatics. In: Handbook of Hydrocarbon and Lipid Microbiology Volume 2, pp. 1355-1397. Edited by K.N. Timmis. Springer-Verlag Berlin, Germany.

-Pieper DH, González B, Cámara B, Pérez-Pantoja D, Reineke W (2010) Aerobic degradation of chloroaromatics. In: Handbook of Hydrocarbon and Lipid Microbiology Volume 2, pp.839-864. Edited by K.N. Timmis. Springer-Verlag Berlin, Germany.

-Pérez-Pantoja D, González B, Pieper DH (2010) Aerobic degradation of aromatic hydrocarbons. In: Handbook of Hydrocarbon and Lipid Microbiology Volume 2, pp. 799-837. Edited by K.N. Timmis. Springer-Verlag Berlin, Germany.

Laboratorio

Sin información disponible